
JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2010 1

Robust Behavior and Perception using Hierarchical
State Machines: A Pallet Manipulation Experiment

R. Cintas, L. J. Manso, L. Pinero, P. Bachiller and P. Bustos

Abstract—Interacting with simple objects in semi-controlled
environments is a rich source of challenging situations for mobile
robots, particularly when performing sequential tasks. In this
paper we present the computational architecture and results
obtained from a pallet manipulation experiment with a real robot.
To achieve a good success rate in locating and picking the pallets a
set of behaviors is assembled in a hierarchical state machine. The
behaviors are arranged in such a way that the global uncertainty
of the task is progressively reduced when approaching the goal.
To do so, actions are generated in each stage that increase the
confidence of the robot of being in that particular relation to
the world. In order to set up this experiment, it is required a
non-trivial set of working senso-motor behaviors. We build on
this set to design and test a pallet moving task in which the
robot has to locate, approach, obtain the pose, pick up and,
finally move the pallet to its target position. The only sensory
sources of information available to the robot are a binocular
vision system and its internal odometry. To carry out this task we
have equipped a RobEx robot with a 1 DOF forklift and a 4 DOF
binocular head. We present the conceptual and computational
models and the results of the experiments in a real setup.

Index Terms—autonomous robots, mobile manipulators, active
perception

I. INTRODUCTION

Designing the computational structures to be used for the
execution of complex sequential plans involving manipula-
tion is an important problem in mobile manipulators. [24].
Current state of research in this area is moving from the
initial mapping and navigation skills towards smarter plan
execution capabilities. However, building up new skills on top
of previous ones is not an easy task. New algorithms of very
different nature (plan executives) have to coexist with well
known, but not yet fully understood, solutions to supporting
abilities such as calibration, local navigation, localization,
mapping or object recognition. Derived from sensor noise or
from the ever increasing number of software lines of code
(running on always limited computational resources), new
complexities arise when dealing with real robots. Furthermore,
teams of many developers and the need for code reuse, settle
even more demanding requirements on today’s technology. A
promising approach is to use component-oriented specialized
middlewares[2], [19], [11], [3] that provide a means to di-
vide, reuse and organize large amounts of sophisticated and
changing code, typical in robotic research environments. In
this work we use RoboComp [1], [11], [20], an open-software
robotics framework entirely developed in our laboratory. It
provides, among other features, a wide variety of components

R. Cintas, L. Pinero, L. J. Manso, P. Bachiller and P. Bustos are with the
University of Extremadura.

E-mail: rcintas@unex.es

and a set of tools specifically designed to facilitate software
development.

Complex sequential tasks involve different abilities such as
active visual searching, detection, recognition, pose estimation,
maneuvering, picking and delivering. Building on the infras-
tructure provided by RoboComp we can more easily focus on
the actual problem. As a simple but realistic example of these
sort of tasks, we have selected the problem of manipulating
a pallet by a mobile robot. To this end, we use the RobEx
platform [10][14] equipped with a 1 DOF frontal forklift. All
the sensor information available to the robot comes from a
4 DOF stereo head and the odometry of the robot platform.
The most interesting aspect of this experiment and the result
we want to stress here, is that each transition that takes
the robot closer to the target is also designed to reduce
the uncertainty in the robot-pallet spatial relation. We thus
interleave actions to reach the goal with actions to perceive it,
building specific representations in each stage. When the task
begins and the robot is searching for something that resembles
a pallet, many remote objects can satisfy the initial detection
criteria. The representations used to maintain these initial
hypothesis are simple and inaccurate. However, as the robot
proceeds toward the target, more complex representations are
used and more computation time is spent in order to refine
these representations. During the approaching stage the robot
keeps itself focused on the target by performing attentional
eye movements. Thus, as the robot gets closer and new tests
are performed, the confidence on the target being a pallet
increases.

The rest of the paper is structured as follows: Section II
provides an overview on previous works related with pallet
manipulation and task execution. Section III details the overall
design of the experiment and the development process. Section
IV presents the main features of RoboComp and RobEx
Section V provides a list of the software components used in
the experiment. Section VI describes the states the robot enters
during task execution and their purpose. Section VII covers the
results obtained from the experiments. Finally, section VIII
provides the conclusions extracted from the work and details
the future works that will be carried out.

II. RELATED WORK

Nowadays, industrialization and automation in storages is
a resource increasingly on demand. Technological advances
have allowed the development of sophisticated and automated
equipments to give support in storage tasks. However, the
control and supervision of this kind of equipment can become
a complex task that may require an expert hand [9].



2 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2010

There are many robotic devices specifically designed to
manipulate pallets which can be used to optimize the space in
warehouses and to improve the safety and speed conditions.
The problem can be decomposed in two separate tasks: point
to point navigation and pallet manipulation. The first one is
typically divided into fixed path navigation and open path
navigation. In fixed path navigation systems a magnetic or
reflective element is fit to the floor, physically defining the
actual paths used by the AGV’s. In open path navigation
systems the AGV uses a method to localize itself in the
workspace and a planner to compute free paths reaching the
current goal. Usual localizations methods are based on laser,
inertial sensors, odometry and/or a fixed detectable pattern
(optical or magnetic) covering the whole workspace [12].

In the pallet manipulation task there are many possibilities,
ranging from knowing the absolute position of all the pallets in
the workspace at any time, to a much more flexible markless
visual detection and servoing scheme, such as the one we
present here. In the works presented in [17][5][21] the authors
use a color-based segmentation method combined with a
priori knowledge about the geometry of the pallet. With this
information the algorithm recovers its pose and generates a
trajectory to pick it up. In [8] the AGV uses a 3D laser to detect
the pallet, avoiding this way the problems associated with
changes of illumination. In other works by the same authors,
a laser scanner is also used for localization and generation of
free-obstacles trajectories in factory buildings [25]. There are
also some proposals that employ different sensory devices to
provide better performance or even include the information of
additional devices such as sonars [22].

In this work, we explore a different approach which is
based on an active detection process using a sequential plan.
Developing a passive detection algorithm that provides good
performance in all different real situations seems infeasible.
Instead, in our approach the problem is solved using a per-
ceptive loop where the robot can hypothesize about what is
being perceived, make decisions to reduce the uncertainty of
its perceptions and act according to the correctness of its
predictions.

III. SEQUENTIAL TASK DESIGN

Robust manipulation by mobile robots requires a careful
design of a sequence of states and transitions in order to act
properly in the different task stages. Safe error recovery is
a very desirable feature, whether when performing actions, or
when perceiving the environment. This is even more important
when using only odometric and visual information. In case of
errors, a good option is to start over from a previous stage,
even going back to the main plan if it is necessary[21]. Thus,
errors make iterative the sequential task design, leading in
some cases to a control logic of considerable complexity.

The formalism of state machines (e.g. as developed by
Harel[6]) is a widely known tool that can be used to solve this
problem. Statecharts provide a graphical means of modelling
how a system reacts to stimuli. This is achieved by defining
the possible states of the system, and how the system can
switch from one state to another (transitions between states).

A key characteristic of event-driven systems is that behavior
often depends not only on the last or current event, but
also on preceding ones. With statecharts, this information is
easy to express. Qt Software has recently released a state
machine framework based on Harel’s Statecharts[18]. This
framework provides an API and execution model that can
be used to effectively embed the elements and semantics of
statecharts. It provides us with concurrent and hierarchical
structures that can be used as executive engines for robust
plan execution. When combined with a component-oriented
architecture, the concurrent dimension of the state machines
can be easily extended to a fast growing network of these
machines, keeping a reasonable bound in the complexity that
needs to be managed by developers and researchers. We use
this framework embedded in RoboComp.

Before deeply describing the state machine used in the
experiments and the restrictions imposed to the environment
inhabited by the robot (see section VI), this section provides an
overall description. The task of pallet delivering is decomposed
in a list of subtasks. This list is generic enough to be useful
for different other proposes:

1) Gather context information.
2) Search for a target object candidate.
3) Approach to gain a favourable point of view.
4) Verify the target and gather initial information.
5) Refine object information.
6) Approach and pick/grasp the object.
7) Manipulate the object.

Note that this sequence of tasks is quite generic and can be
applied to a wide variety of robots, applications and environ-
ments. Each of these subtasks represents an intermediate state
towards reaching the final goal. To do so, each state should
be associated with the corresponding algorithms that solve the
specific problems, whether locally or through calls to remote
components. Also and no less importantly, there are different
failure conditions, local and remote, that can occur during the
execution of each subtask. In order to avoid major problems,
these error conditions have to be managed by transitions to
former or halt exception states. These states are not denoted
in the former list of subtasks but appear in the graph shown
in figure 4.

The goal of this experiment is to analyse the advantages
of using a state machine framework inside of a component-
based robotics middleware in order to run a complex sequential
task. To provide a complete description of the whole system,
two description levels will be given. The first one, shown
in the next section, describes the network of components
that controls the robot, providing a coarse description of the
system. The second one, in section VI, describes the state
machine designed for the experiment.

IV. ROBOCOMP AND ROBEX

RoboComp

RoboComp is a component-oriented robotics framework. It
was created in 2005 by the Robotics and Artificial Vision
Laboratory of the University of Extremadura. Since then, it
has been widely used by many students and researchers of



CINTAS ET AL. : ROBUST BEHAVIOR AND PERCEPTION USING RECURSIVE STATE MACHINES: A PALLET MANIPULATION EXPERIMENT 3

the laboratory. Now, it can be considered a mature project
which integrates many components with different function-
alities: hardware interfacing (e.g. cameraComp, differential-
RobotComp, laserComp, forkliftComp), data processing (e.g.
visionComp and roimantComp, for visual features detection,
and cubafeaturesComp, for laser features detection), robot be-
haviors (e.g. gotopointComp, wanderComp) and many others.
Apart from its wide set of components, it provides other
useful features such as: a) a flexible organization, easing the
addition of new components; b) utility scripts for creating and
modifying components; c) a graphical component manager
that allows setting up component networks and monitoring of
their behavior dynamically; d) transparent connection to open
source simulators (i.e. Gazebo and Stage); e) an automated in-
stallation script; f) logging facilities; g) recording and playback
of component data structures for off-line development and
debugging; h) rapid Python prototype development support.
Beside all these features, RoboComp can seamlessly use
two different communication middlewares: a) Ice, a industrial
grade middleware created by ZeroC and b) DDS, a high-
performance publish/subscribe middleware that has been in-
corporated so that it can also support RMI-alike calls[15].

RoboComp is also equipped with a numerous set of classes
comprising different issues related to robotics and computer
vision such as matrix computation, hardware access, Kalman
filtering, graphical widgets, fuzzy logic or robot propriocep-
tion. Among the different available classes, the robot propri-
oception class, which we call InnerModel, plays an important
role in this work. It deals with robot body representation and
geometric transformations between different reference frames,
lightening the handling of many questions related to analytical
and projective geometry. For instance, figure 1 shows the
different reference frames that take part in the problem of
pallet manipulation. These reference frames are associated
with all the mobile elements of the robot, but also with
the floor, objects of the environment and virtual elements.
The class InnerModel provides the mathematical support to
represent and manage all this elements. It is based on an
XML description file where all the transformations nodes are
identified and described. Using this description, InnerModel
creates an internal representation of the kinematics of the robot
and its environment through which it provides many methods
to estimate projections and frame transformations.

RobEx

RobEx is an open-hardware robotics platform that incorpo-
rates different accessories forming a totally equipped robot. It
presents all the necessary features to conduct real experiments
in computer vision, robot manipulation and mobile robotics.

For the pallet manipulation problem, RobEx has been
equipped with a jointed stereo vision head and a 1 DOF
forklift (see figure 2). The head provides 4 movements: a neck
movement followed by a common tilt and two camera-specific
pan movements. The neck allows cameras to point to objects
on the sides of the robots without moving the robot platform.
The tilt allows the robot to point to low or high positions.
The pan movements can be used for vergence fixation of

Fig. 1: Reference frames taking part in the pallet manipulation
problem.

objects lying approximately in front of the camera pair. This is
particularly useful in order to increase the binocular space and
to reduce the 3D triangulation error. The forklift is similar to
its industrial counterparts. It is capable of supporting loads of
up to 5kg safely and has a span of 150mm. The gap between
the forks separation can be manually adjusted.

Fig. 2: The RobEx platform.

V. BASIC COMPONENTS

Each node of the component network contributes with a
particular functionality to the whole system. Besides Forlift,
the component that holds the state machine that sequences
the behaviors presented in this paper, there are several other
components. Some of them are goal-oriented and are associ-
ated with behaviors (e.g. Tracking or Trajectory), others play a
passive role. A list of the components with a brief description
of their function is detailed below.
• DifferentialRobot: Provides an API to control a differen-

tial mobile robot. It currently supports the RobEx, Scitos



4 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2010

Fig. 3: Component network.

and Morlaco robots, as well as the open source Gazebo
simulator and for the Player hardware abstraction layer.

• JointMotorArray: It is used to control motor arrays
sharing a communication bus. The component provides
configuration parameters for the bus and for each motor.
The provided API can be used to command motors
individually or synchronously. Besides new bus drivers
can be added easily, it currently supports a wide variety
of motors.

• Fork: Provides an API to access forklifts. Currently it
supports the RobEx forklift manipulator[14].

• JoyStick: It is used to manually send motor control
commands to robot platforms.

• HeadNT2P: Provides an API to control a stereo head with
four degrees of freedom: neck (common pan), common
tilt movement affecting both cameras, and two separate
camera-specific pan movements (see figure 1). Its API
makes available commands to trigger single or coordinate
saccadics. In order to perform movements this component
relies on the JointMotor component.

• CameraArray: Accesses arrays of cameras that use the
same communication bus. Provides configuration param-
eters for the bus and for the image retrieval process.
Its API allows single or synchronized multiple image
retrieval. Currently, the component supports Firewire,
V4L2, Gazebo and the privative SDK’s from Prosilica
and Point Grey. New camera drivers can be added by
subclassing and abstract ”Camera” class.

• Vision: Computes regions of interest as local extrema in
Harris-Laplace pyramid. It provides the list of regions
along with the image pyramids. If a suitable GPU is
available, the component can compute SIFT descriptors
at video rate on the detected regions using SiftGPU.

• Roimant: This component stabilizes the ROI’s computed
by Vision. In stereo configurations it also maintains in
memory a locally updated copy of the regions visible in
the world around the robot. It computes the 3D coordi-
nates of regions using a standard correlation measure and

the epipolar geometry as reported by HeadNT2P.
• Tracker: Controls a camera to provide a tracking behavior

on a certain ROI or initial angular coordinates. It can
apply correlation over the whole pyramid to recover from
failure situations.

• RobotTrajectory: Computes and follows local trajecto-
ries using odometric information. It can compute Bézier
curves to fit initial and final orientation conditions for the
robot.

The resulting network of components can be seen on
figure 4. The following section covers Forklift, the component
specifically designed for the experiment.

VI. A STATE MACHINE FOR PALLET MANIPULATION

In this section, it is described the design of Forklift, the most
relevant component of the experiment and the one that holds
the task-specific state machine. The statechart illustrating the
behavior of the component is shown in figure 4.

Some of the algorithms used in this experiment use top-
down mechanisms in which the representation of the world is
compared with the actual inputs of the cameras. In order to
maintain such a representation, components use a class named
InnerModel. Instances of this class are not synchronized but
updated by remote calls to DifferentialRobot and HeadNT2P
components (which maintain the odometry and the positions
of the joints, respectively). Using this object, Forklift builds
a basic 3D representation of its environment using the Open-
SceneGraph engine (OSG)[16].

The remaining of this section chronologically describes the
states that the component (the state machine describing its
behavior) would go through assuming absence of any kind of
error. Error-triggered transitions are specified within each state
description.

A. Getting floor color

The component initially assumes that it is initialized with
a flat colored floor underneath the robot. Thus, when in this
state, the floor color is obtained from the central region in the
left camera image. In order to accomplish this step, the robot
points down directly to the closest area in front of its body.
The color is further used in order to specify how the floor
should look like in the 3D representation of the environment
mentioned at the beginning of the section.

Figure 5 shows the initial 3D world representation after
extracting the color of the floor.

B. Search for a target object candidate

The next step deals with the acquisition of a target candidate
that can become a certain goal after a few selected actions are
taken. As can be seen in 11, depending on the distance and
relative orientation to the pallet, the visibility conditions may
vary drastically. We have developed an algorithm for this stage
that reliably detects close pallets and suggests good candidates
when the distance to the target increases. The algorithm pro-
cesses the images in several steps beginning with a superpixel
segmentation as reported in [4]. This step performs a color



CINTAS ET AL. : ROBUST BEHAVIOR AND PERCEPTION USING RECURSIVE STATE MACHINES: A PALLET MANIPULATION EXPERIMENT 5

Fig. 4: Hierarchical state machine used in the experiment. There are six macro states and the Standby and Final destination.
Each macro state includes inner states representing with finer detail the structure of each stage. Note the arrows pointing back
to former states, signalling failure situations that prevent the normal working of the plan

based partition of the image using graph techniques. The result
of processing an image with this technique can be seen in
figure 6.

The superpixel segmentation outputs a list of regions, each
one pointing to a list of pixels in the image. We describe now
the remaining steps carried out by the algorithm and depicted
in figure 7.

• Gray scale transformation and range reduction down to
100 bins using the following expression:

gi = 100∗ (Ri +Gi +Bi)/755 (1)

where g is the final gray level assigned to pixel i. The goal
of this step is to reduce the sensibility of the segmentation
algorithm to small variations in color.

• Apply a flood fill algorithm placing seeds at the center
of each gray level region. The output is a list with the
position and size of the rectangles surrounding the regions
and the total number of pixels inside each one. The result
is shown in figure 7 under the subtitle Detected regions.

• Grouping of compatible overlapping regions to further
reduce the number of separate regions belonging to the

same object. The criterion for compatibility is expressed
in the following conditions:

merge(ri,rk)⇔

‖color(ri)− color(rk)‖< Tc
∧

size(ri)∩ size(rk)> Ta

(2)

where merge() is a predicate that merges regions ri and rk
if both conditions are satisfied, being color(ri) the mean
rgb color and size(ri) the size in pixels of i. Tc is an
empirical threshold for color absolute difference and Ta a
threshold for size difference. The set S of current regions
is updated correspondingly:

{
St+1← St −{ri,rk : ri,rk ∈ St ∧merge(ri,rk) = true}
St+1← St +{merge(ri,rk)}

(3)
The output of this step is shown in figure 7, over the
subtitle Overlapping.

• In this step most of the regions belonging to the floor are
eliminated from the current list and the mean color of
the floor is reestimated. To do so, regions are sorted by



6 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2010

Fig. 5: Top: the 3D representation of the modelled world.
Bottom: an image fetched from the real camera (left), and
the predicted image using the 3D engine (right).

Fig. 6: Left, original image. Right, superpixels obtained with
the Felzenswalb and Huttenlotcher segmentation algorithm

the value of the Y coordinate (vertical axis in image) in
ascending order. The list arranged this way holds, in the
initial positions, the regions situated lower in the image
and, therefore, closer to the robot. for each one of them,
its mean rgb color is compared to the current floor color,
as obtained in the Get floor color subsection. If the region
color is close enough to the floor color, the region is
removed form the current list S:

St+1← St −{ri : ri ∈ St ∧ rgb(ri)< Tc} (4)

and the mean floor color is updated using the following
expression:

rgb(F) = rgb(F)∗ (1−λ )+ rgb(ri)∗λ (5)

where color(F) is the RGB current mean color of the
floor and color(ri) is the mean color of region i. The

output of this step is shown in figure 7, over the subtitle
Floor substraction.

• Now the shape of the regions is analysed to eliminate
those with a clear elongated shape. To obtain a better
estimate of the region shape than the provided as an
enclosing square by the flood fill algorithm, we compute
the auto-correlation matrix of the points belonging to the
region:

M =

(
∑(x̄−xi)

2

N
∑(yi−x̄)(xi−ȳ)

N
∑(yi−x̄)(xi−ȳ)

N
∑(ȳ−yi)

2

N

)
(6)

A simple check on the ratio between the eigenvalues of M
gives us a criterion to eliminate elongated regions, such
as those corresponding to the junctions among the floor
tiles. Then set of admitted regions S gets updated as:

St+1← St −
{

ri : ri ∈ St ∧
λ1

λ2
< Tλ

}
(7)

being λ1 and λ2 the two eigenvalues of M. The output
of this step is shown in figure 7, over the subtitle Shape
analysis.

• The last feature analysed is the size of the region in the
world reference system. To estimate it we assume that the
object is on the floor. Knowing the geometry of the robot
and of its cameras it is straightforward to backproject the
optic rays passing through any pixels of the region, and
calculate the point of intersection with the floor plane.
From these 3D coordinate an overall size can be easily
computed. Those regions too big or too small are removed
form S:

St+1← St −{ri : ri ∈ St ∧ size(ri)< Ts} . (8)

being Ts a threshold on admitted sizes derived from
knowledge of the pallet real size. The output of this step
is shown in figure 7, over the subtitle Size restriction.

• The final candidate is selected comparing all the remain-
ing regions in the list to a model pallet P stored in
memory. Empirically, the most reliable feature to select a
final candidate is its RGB color, so a direct check using
the euclidean RGB distance to the model pallet color is
performed and the best region selected:

St+1←
{

ri : argmin
i

(‖rgb(ri)− rgb(P)‖)
}

(9)

C. Approach the candidate object to gain a favorable point
of view

Once a candidate object has been detected, the robot
starts an approaching behavior that should take it to a close
and favorable point of view. We define here favorable as
a combination of the distance from the robot to the object
and the percentage of image it occupies. To accomplish this
subtask several concurrent behaviors must be active. In order
to move the robot towards the target position, the world
coordinates of the target are given to the previously mentioned
“RobotTrajectory” component. It computes the path to be



CINTAS ET AL. : ROBUST BEHAVIOR AND PERCEPTION USING RECURSIVE STATE MACHINES: A PALLET MANIPULATION EXPERIMENT 7

Fig. 7: Segmentation and classification process for extraction of candidate regions. See text for details.

followed and drives the robot according to it. Trajectories are
computed using Bézier curves so, not just the final position can
be provided, but also a specific final orientation. Third degree
Bézier polynomials are simple and easy to use curves, as long
as the initial and final orientations can be specified. Regarding
the cameras, the tracking component fixates the candidate
object triggering correcting saccades on the left camera when
needed. It is worth mentioning that, despite the robot has a
stereo vision system, only the left camera is used.

D. Recognize or reject the candidate object and estimate its
orientation on the floor

When the robot enters the “recognize or reject” state, a
rapid test to accept or discard the candidate object is run.
At the same time, its orientation on the floor is estimated.
The process has two different stages. First, a set of texture
descriptors computed on the regions of interest is requested to
the VisionComp component (see graph of components in Fig-
ure 3). Then, we match the obtained set of descriptors against
a collection of templates using a simple voting scheme[1]. If
the classifier returns a positive answer, the object is recognized
as a pallet and the subtask proceeds.

The second stage consists on computing the main orienta-
tion of the object. This is achieved by calculating the histogram
of gradients of the bounding box surrounding the candidate
object. The orientation of the pallet on the floor is computed as
the main mode of the histogram. This completes the estimation
of the initial pose of the pallet and triggers the beginning of
the next state.

E. Refine object pose estimation

When entering this state, the robot believes that it is taking
a close look at a pallet. However, its pose estimation being
still imprecise, he decides to refine the estimated pose of
the pallet. A known 3D wire-frame model of the pallet with
its real dimensions is used to achieve this task. Using the
OSG 3D engine, the pallet model and the already mentioned

InnerModel class (a continuously updated representation of
the state of the robot), it is easy to render the virtual pallet.
This way, the scene is rendered with the pallet in the estimated
pose, as it should be seen by the real left camera of the robot.
This virtual image is subtracted from the real image using a
euclidean metric in RGB space:

IDi f f =
∥∥Ir−Rx,y,λ ))

∥∥ (10)

The result is converted to grayscale and binarized using an
adaptive Otsu threshold. Finally, all white pixels are counted to
obtain a score. This value must be greater than a predefined
threshold. If it is not, the pallet is also rejected. If this test
succeeds the procedure is iterated varying the position and
orientation of the pallet in a small range to obtain the pose
that minimizes the sum of white pixels:

P = argmin
x,y,λ

∥∥Ir−Rx,y,λ ))
∥∥ (11)

P is the final pose, Ir is the current image as taken by
the left camera and Rx,y,λ is the image synthesized by the
OSG rendering engine with the model pallet set at x,y,λ
coordinates.

The pose P is selected as the new estimated pose. This loop
is repeated twice, reducing the second time to half the search
range in the x,y,λ dimensions. Figure 8 shows how the wire-
frame model looks when it is drawn in the image from the real
camera and the corresponding image from the virtual camera.

F. Final approach and pick up operation

Once a good estimate of the pose is obtained, this last
state moves the robot towards the pallet by a remote call to
the ”RobotTrajectory“ component. Before exiting this state,
the forklift should have entered smoothly through the pallet
openings. Four infrared sensors placed in the forklift arms,
two in each one, send a signal to the component when they
are occluded by the pallet. This information triggers the lifting
behavior that is performed by the Fork component.



8 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2010

Fig. 8: Final estimation of pallet pose after iterating over x,
y and α computing de difference between the real and the
synthetic images

VII. EXPERIMENTAL RESULTS

The experiments have been conducted using the RobEx
platform [10], [14] (see figure 2). In the experiments the
floor does not have a totally homogeneous texture, but its
dominant color is different from the surrounding walls. Figure
9 shows a sequence of six pictures in which the robot detects,
approaches, recognizes and estimates the pose, maneuvers and,
finally, picks and manipulate the the pallet. Figure 10 provides
an overhead perspective of the environment.

The experimental procedure used to evaluate the robustness
of the system (both the algorithms and the state machine
used) is the execution of the task with different values for
the variables defining the pallet pose: pallet distance d and
pallet orientation a. Distance has been tested for three different
values: 100, 150 , 200 and 250 centimeters. Pallet orientation
takes the following values: −π/2, −π/3, −π/4, 0, π/4,
π/3 and π/2 radians. For each of the possible combinations
the task is performed three times. Thus, a total of 84 tests
were run. Results are shown in table I. Cells containing
the character X express a 100% of success for the whole
subset of experiments. By contrast, those cells containing an
additional X indicates a certain percentage of failure for the
corresponding pallet pose and those marked with a single X
express a 100% of failure.

TABLE I: Experimental results

−π/2 −π/3 −π/4 0 π/4 π/3 π/2
100 X X X X X X X
150 X X X X X X X
200 X X X X X X X X X
250 X X X X X X X

As expressed in the table, all failures are related to the robot-
pallet distance. Thus, when it is far enough the robot can not
recognize the pallet. Figure 11 shows the pallet at 200 meters
with an orientation of −π/2 and 0 radians respectively. It
can be observed that the size of the projection of the pallet
varies depending on the orientation. This problem becomes
permanent when the pallet distance increases in such a way
that the robot can not recognize it at any orientation. In these
situations, any detector would fail since the visual information
is not enough to obtain reliable results. We think that this
question can only be solved using an active approach that

(a) (b)

(c) (d)

(e) (f)

Fig. 9: Sequence of images showing different states of the
pallet manipulation experiment: (a) detection of the pallet; (b)
approach the target position; (c) visual tracking of the target;
(d) refine pallet pose estimation; (e) final approach; (d) pick
up operation.



CINTAS ET AL. : ROBUST BEHAVIOR AND PERCEPTION USING RECURSIVE STATE MACHINES: A PALLET MANIPULATION EXPERIMENT 9

Fig. 10: Overhead perspective of the environment used for the
experiments.

actively drives the robot in search of the pallet. In our detection
scheme, it would translate into new states and transitions that
would endow the robot with the necessary behaviors to affront
and solve the aforementioned situations.

Fig. 11: Perspective of a pallet, with different orientations,
situated two meters away from the robot

VIII. CONCLUSIONS AND FURTHER WORK

In this paper we have described an experiment designed to
study the problem of sequential integration of behaviors in a
real manipulation task conducted by a mobile robot. Instead
of using complex and time-consuming algorithms, robust
behavior is achieved by iterating motor and perceptual states.
In these states, the robot selects, approaches and verifies its
target, in such a way that uncertainty is reduced by an iterative
global behavior mediated by active perception. Embedding
plans in state machines has proved an efficient technique for
achieving complex sequential goal in mobile manipulators.

In order to build complex behaviors for the robots, we need
to handle complex software systems using state of the art
software engineering technologies. These new tools must pro-
vide us with the necessary means to ensemble many different
concurrent processes, each one contributing to a piece of the
overall robot behavior. We have shown how one of these tools,
RoboComp, can be further extended to include hierarchical
and concurrent state machines providing a necessary level of
sequential control. Further work needs to be done to achieve
higher levels of robustness and repeatability. Each vision
algorithm can be improved individually and the whole state
machine can be augmented with new states representing active
relations between the robot and its environment. An interesting
direction of research would be to apply machine learning

techniques to modify on-line some internal parameters of the
algorithms and parts of the structure of the state machine.

ACKNOWLEDGMENTS

This work has been supported by grant PRI09A037 and
GRU09064, from the Ministry of Economy, Trade and Innova-
tion of the Government of Extremadura; by grant TSI-020301-
2009-27, for the ACROSS project, funded by the Ministry of
Industry, Turism and Commerce of the Spanish government
(AVANZA2) and the European FEDER program; and by grant
PDT9A044 for the project “Escáner móvil robotizado” funded
by the Ministry of Economy, Trade and Innovation of the
Extremaduran Government.

REFERENCES

[1] Bachiller P. Percepción dinámica del entorno en un robot móvil. PhD
thesis. 2008.

[2] Brooks A., Kaupp T., Makarenko A., Williams S. and Oreback A.
Orca: A Component Model and Repository. Software Engineering for
Experimental Robotics. Springer. 2007.

[3] Brugali, D., and Shakhimardanov A. Component-Based Robotic Engi-
neering (Part II). Robotics and Automation Magazine, IEEE 17, no. 1:
100–112. 2010.

[4] Felzenswalb P. F., Huttenlocher D. P. Efficient Graph-Based Image Seg-
mentation International Journal of Computer Vision, Volume 59, Number
2, September 2004

[5] Garibotto G., Masciangelo S., Bassino P. and Ilic M. Computer vision
control of an intelligent forklift truck In: Proceedings of Conference on
Intelligent Transportation Systems. Ieee: 589-594, 1997

[6] Harel D. Statecharts in the Making: A Personal Account. Communications
of the ACM. Vol 52, issue 3. 2009

[7] Henning M. A new approach to object-oriented middleware. IEEE Internet
Computing 8, no. 1: 66-75. 2004.

[8] Lecking D., Wulf O. and Wagner B. Variable pallet pick-up for automatic
guided vehicles in industrial environments. In: IEEE Conference on
Emerging chnologies and Factory Automation, 2006. ETFA’06. Citeseer;
2006:11691174.

[9] Maldonado F. J. and Vega J. R. Diseño y control del sistema de
manipulación en un almacén automático.

[10] Manso L. J., Bustos P. and Bachiller P. Multi-cue Visual Obstacle
Detection for Mobile Robots. Journal of Physical Agents. Vol 4, issue
1. 2010.

[11] Manso L. J., Bustos P., Bachiller P., Cintas R., Calderita L. and
Núñez P. RoboComp: a Tool-based Robotics Framework. In Proc. of Int.
Conference on Simulation Modeling and Programming for Autonomous
Robots. 2010.

[12] Martı́nez H., Cánovas J.P., Izquierdo M.A., and Skarmeta A.G I-Fork:
a flexible AGV system using topological and grid maps. In Robotics and
Automation, Proceedings. ICRA’03. IEEE International Conference on,
2:2147–2152. 2003.

[13] Martı́nez J., Romero-Garcés A., Manso L., and Bustos P. Improving
a Robotics Framework with Real-Time and High-Performance Features.
In SIMPAR, Second International COnference on Simulation, Modelling
and Programming for Autonomous Robots, 2010.

[14] Mateos J., Sánchez A., Manso L. J., Bachiller P. and Bustos P. RobEx:
an Open-hardware Robotics Platform. In Proc. of Workshop de Agentes
Fı́sicos. 2010.

[15] Object Management Group: Data Distribution Service for Real-time
Systems (DDS), version 1.2 2007.

[16] OpenSceneGraph home page. http://http://www.openscenegraph.org.
[17] Pages J., Armangue X., Salvi J., Freixenet J. and Marti J.. A computer

vision system for autonomous forklift vehicles in industrial environments.
in In Proc. of The 9th Mediterranean Conference on Control and
Automation (MEDS). 2001.

[18] Qt Software. Qt State Machine Framework.
“http://doc.trolltech.com/solutions/4/qtstatemachine/”. Last visited
2010.

[19] Quigley M., Gerkey B., Conley K., Faust J., Foote T., Leibs J., Berger
E., Wheeler R. and Ng A. ROS: an open-source Robot Operating System.
In Proc. of Int. Conference ICRA Workshop on Open Source Software.
2009.



10 JOURNAL OF PHYSICAL AGENTS, VOL. 1, NO. 1, JULY 2010

[20] RoboLab. RoboComp Project. “http://robocomp.sourceforge.net”. 2009.
[21] Seelinger M. and Yoder J-D.Automatic Pallet Engagment by a Vision

Guided Forklift. Proceedings of the 2005 IEEE International Conference
on Robotics and Automation. 4068-4073, 2005.

[22] Tamba TA, Hong B, and Hong K. S. A path following control of
an unmanned autonomous forklift, Intl J. of Control, Automation and
Systems. vol:7no1pp113-122, 2009.

[23] Teller S., Walter M.R., Antone M., Correa A., Davis R. and Fletcher
L. A Voice-Commandable Robotic Forklift Working Alongside Humans in

Minimally-Prepared Outdoor Environments. IEEE International Confer-
ence on Robotics and Automation, Anchorage, Alaska, USA. 2010

[24] Wasik Z. and Saffiotti A. A hierarchical behavior-based approach
to manipulation tasks. In Proc. of Int. Conference on Robotics and
Automation. 2003.

[25] Wulf O., Lecking D. and Wagner B. Robust Self-Localization in Indus-
trial Environments based on 3D Ceiling Maps, International Conference
on Intelligent Robots and Systems (IROS), Beijing, China, October 2006


