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Multimodal Interaction with Loki
P. Bustos, J. Mart�́nez-Ǵomez, I. Garć�a-Varea, L. Rodŕ�guez-Ruiz, P. Bachiller, L. Calderita, L.J. Manso, A.

Sánchez, A. Bandera, and J.P. Bandera

Abstract—Developing a simple multimodal interaction game
with a 31 dof's mobile manipulator can become a challenging
enterprise. A conceptually simple task quickly unfolds into a
rather complex ensemble of driver-oriented, framework-based,
software-enabled, state-machine controlled mechatronics. In this
paper we propose a multimodal interaction game designed to
test the initial steps of a cognitive robotics architecture called
RoboCog. In the game, a human shows an object to the robot
and asks him to touch it with one of his hands. Loki, the robot,
searches, gazes, represents and touches the object, then talks
and waits for new events. The game goes on until the human
player decides to quit. In this paper we describe the steps taken
to achieve this goal, analyzing the decisions made in terms of
architectural choices and describing how the sequential control of
multimodal resources was built. To conclude, several snapshots of
the game are presented and commented along with video material
of Loki playing with a volunteer.

Index Terms—Mobile manipulators, Humanoid Robotics,
Human-Robot Interaction

I. I NTRODUCTION

H U man-robot interaction is becoming a pressing goal in
the global robotics agenda. If robots are to accompany

people in their daily activities, they need to know how to
interact with them using different sensorial modalities. Speech,
facial expressions or gestures are among the most basic human
ways of interacting and sharing information.

In this work, we present an initial effort towards modeling,
building and understanding simple multimodal HR interaction
tasks using a quasi-humanoid mobile manipulator called
Loki [1]. The experiment consists on a simple game between
a human and a robot. The human introduces herself and asks
Loki to play the game. Upon acknowledge, she shows a yellow
ball to the robot and it starts to track it, continuously �xating
its gaze upon the ball with an RGBD sensor placed in the
fronthead. After a human verbal indication, the robot reaches
the ball with its hand and waits for a new interaction, or moves
its arm back to a resting position after some courtesy delay.
The robot tracks the object and accepts new speech commands
during the whole span of the game. The development of
this interaction game involves several problems such as
generalized inverse kinematics, RGBD object detection and
tracking, speech recognition and synthesis, and sequential task
execution. All these problems present a signi�cant degree of
complexity, but the most challenging aspect is the integration
and coordination of these capabilities in an expandable

P. Bustos, P. Bachiller, L. Calderita, L.J. Manso and A. Sánchez are with
the University of Extremadura.

I. Garć�a-Varea, J. Mart�́nez-Ǵomez and L. Rodr�́guez-Ruiz are with the
University of Castilla-La Mancha, Albacete, Spain

A. Bandera and J.P. Bandera are with the University of Málaga, Ḿalaga,
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architecture that, further on, will facilitate the design of new
and more complex tasks.

The interaction game is a three-stage process where the
following subtasks are performed: scan and track the ball,
acquire an internal representation of the position (with respect
to the robotic arm) and try to touch the ball.

Fig. 1: The mobile manipulator Loki

The interaction game presented here is an early test of
the robotics cognitive architecture, RoboCog, in which several
research groups are currently involved. RoboCog has its initial
inspiration in the classic three layer architectures described by
Gat [2] and in the Simulation Theory of the Mind, see for
example [3]. Reactive, planning and executive modules access
a complex, multi-faceted representation of the robot itself, its
environment and the agents in it. This structure is calleddeep
representationand can emulate the result of virtual actions
done by the robot in its represented world. RoboCog combines
real and virtual actions at different levels of abstraction to
generate the best possible behavior given the current task.

During the last few years, the robotics community has
developed fully autonomous robots capable of performing
potentially interesting tasks in indoor environments such as
the one presented in this paper. Despite rather sophisticated
planners that support adaptive plan execution are available
(e.g., [4]) most of these works are limited to very speci�c
tasks, so the research effort is focused on task execution
and the low level algorithms that enable robots to detect the
elements of the environment, approach them and pick them
up.

The work presented in [5] describes the architecture and
several design decisions of a robotic butler. In the paper, task
execution is solved using behaviors activated by a hierarchical
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concurrent state machine. Besides few additional features such
as the one presented in [6], that enables robots to learn these
state machines, most task-speci�c advanced robots follow the
same approach.

The rest of the paper shows the steps taken to set up the
HRI game based on RoboCog and is organized as follows. In
section II a brief introduction to Multimodal HRI is provided.
Section III provides a brief description of the robot Loki.
Section IV introduces the basic building blocks of RoboCog.
Section V describes how Loki and RoboCog are instantiated in
a multimodal interaction game called ”touch the ball” Finally,
in section VI the results are analyzed along with the ongoing
research in this topic.

II. M ULTIMODAL INTERACTION

In the scienti�c literature, multiple de�nitions of Human-
Robot Interaction (HRI) can be found. HRI is basically
devoted to the understanding, design and evaluation of robotic
systems for their use by or with humans [7]. Moreover,
Multimodal HRI can be considered as the study of the
interactions between humans and robots using multiple sources
of information or channels to provide a natural way of
communication.

The interaction between robots and humans is inherently
in�uenced by the proximity between them. According to
that, HRI is classi�ed as remote and proximate interaction.
Remote interaction is considered when the human and the
robot are separated temporally or spatially. This type of
interaction focuses on teleoperation, supervisory control and
telemanipulation. Proximate interaction is considered when
human and robot are both placed in the same scene, and is
mainly focused on the so-called social robots, which includes
social, emotional and cognitive aspects of interaction [7]. The
types of communication that exist in this interaction can be
grouped into: oral, visual and gestural.

In this work we are focused in the proximate multimodal
interaction approach, where a social mobile robot commu-
nicates with a human, with the �nal goal of playing an
interactive game named ”touch the ball”, where the three types
of communication are addressed.

III. L OKI THE ROBOT

As the human counterpart in the game we use the robot
Loki [1] (in Fig. 1 its current aspect is shown), which is
an autonomous mobile robot built as a collaboration among
several entities: the University of Castilla-La Mancha, the
University of Extremadura, Robotnik S.L.L and IADex S.L.
It is composed of a mobile base, a rigid back spine, a torso
with two arms and hands and an expressive head.

The base of the robot has been designed to support a load
of 200 Kg and can accommodate two 36Ah/24V batteries,
power supplies, a battery charger, a DC/AC 2 KW inverter, two
lasers or four Asus Xtion RGBD cameras attached to each side
of the base,and a dual-socket, 12-cores, liquid-cooled Xeon
board holding a NVIDA GTX650Ti GPU. This con�guration
provides enough autonomy and processing power to host our
complete cognitive architecture on board.

Each arm is composed of four Schunk servo-drives in a
human-like upper arm con�guration (3 degrees of freedom
for the shoulder and 1 for the elbow) and a forearm built in
RoboLab with 3 additional dofs (a rotation along the forearm
and two orthogonal rotations in the wrist). This two last dofs
are built using a 3R Stewart platform that provides a great
holding torque for the wrist.

Attached to the top of the torso, Loki holds the expressive
headMuecas(see Fig. 2). This head has been developed in
parallel to Loki and has a 4 dofs neck that uses the same
kinematic construction as the forearms. The head holds a
binocular visual system composed of two PointGrey Flea2
1Mp cameras with 6mm focal lenses and a RGBD sensor
placed in the fronthead. The cameras are housed inside two
hollow spheres made in Te�on. These eye-balls can pan
independently and have a common tilt. The eyes are moved
by means of three linear motors from Faulhaber that provide
enough force to avoid the need of gear trains and to reach
maximum angular speeds close to 600 deg/sec.Muecasalso
has an articulated yaw driven by a micro-servo and 2 DOF
eyebrows, controlled by 4 servos as well.

(a) Eyes detail (b) Complete head

Fig. 2: Muecas head

IV. ROBOCOG: A COGNITIVE ARCHITECTURE BASED ON

INTERNAL SIMULATION

RoboCog is a cognitive architecture being developed as
a common effort among several research groups at different
universities including UCLM, UMA, UC3M, UJ and UEX.
During the last �ve decades, many architectures have been
proposed to model general intelligence in arti�cial agents and
humans. Starting with some of the paradigmatic projects from
the golden age of classic AI such as CyC [8], Prodigy [9],
SOAR [10] or ACT [11], which many are still alive and
in active development, passing through the skimming �lter
of the Behavior-Based AI in the late eighties [12] and
arriving to the integrative look of three-layer architectures
compiled by Gnat [2] in the early nineties, most of these
control schemes center the debate on the integration of the
deliberative/reactive spectrum into a working computational
design. Several reviews have been recently published [13],
[14] showing the history, evolution and current state of the
topic.

A less common approach in the realm of cognitive
architectures for robots is the so called Simulation Theory of
Cognition [3], [15], [16], [17]. This theory advocates the use
of an internal model that is sophisticated enough to anticipate
and simulate the outcome of virtual actions in the form of
virtual perceptions. Quoting Holland [3]:
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...at the heart of the mechanism is not just the body
in the environment, it is a model of the body in a
model of the environment.

In cognitive neuroscience, the idea of the brain continuously
generating predictions that anticipate the relevant future is
widely accepted and important research is being conducted to
prove it as one of the basic building blocks of intelligence [18],
[19], [20]. This idea is so powerful because it can be applied
hierarchically at many abstraction levels, from the short
timestamp of a spinal cord re�ex, to the anticipatory perception
of a distant approaching car, using a priori information
recovered from episodic memory in combination with low-
frequency visual and auditive indicators.

To translate the core of these ideas to robotic computational
architectures, a notion of internal or inner model is often
used. This model represents actively the agent's environment
and holds enough structure to act as a virtual simulator.
Although most architectures use some kind of internal model,
i.e. symbolic domain knowledge in task planners or grid
representations of space in path planners, a more integrated,
�exible and coordinated representation is needed if we want
to perform complex simulations at different abstraction levels.
We use the term,deep representation(DR), to refer to this
computational modules that can be used to represent, update
and simulate the current state of the robot itself, the proximal
environment around it and of the agents in it.

The DR represents the geometry of the scene and a set of
symbolic attributes and predicates that are relevant for the rest
of the architecture. Symbols and predicates are computed from
the model at any time and their description is available to the
rest of the architecture through a shared ontology. The DR
of a robot is a central repository of elements and events in
its ego-space. It can be queried for geometric data such as
the coordinates of some object nearby, and also to evaluate
symbolic predicates such as if its body will get through a
narrow passage. It also can export its entire state as a PDDL
expression to be used by task planners. The DR is implemented
using the RCIS simulator of the RoboComp ecosystem [21]
working as an internal updatable model.

Fig. 3: Outline of the RoboCog architecture.

In the design of RoboCog we have extended the ba-
sic three-layer idea with a DR module, that provides the
necessary simulation support. As Figure 3 shows, the ex-
tended set, deliberative-executive-behavior-DR (DEBD) de-
�nes the overall external view of the architecture. Behaviors
are implemented as networks of software components called
CompoNets. Typical behavior modules proposed for current
mobile manipulators usually include complex activities, such
as planning the movements of the body in cluttered space
(including standard navigation), object detection recognition
and manipulation, emotion recognition and generation, speech
recognition, synthesis and dialog generation, that need a rich
underlying software support.

A vaguely related idea to thedeep representation, widely
spread in the eighties, is the blackboard architecture where a
common space is used by several experts to gradually solve
a problem [22]. RoboCog however, proposes a much more
speci�c and structured content, representing the robot itself
and its surrounding space. DR is much closer to virtual worlds
than to static memory structures and are designed for real-time
functioning.

In the next section, an early implementation of RoboCog
for a basic multimodal interaction game is described in detail.
With the exception of the planner, that has been replaced in
this experiment by a hierarchical state machine, all the others
elements of the architecture are in use.

V. EXAMPLE OF USE: ” TOUCH THE BALL” GAME

As explained in Section I, the ”touch the ball” game consists
on a human showing the robot a ball at different places
and asking it to touch it with its hand, while maintaining
a simple conversation. Our initial RoboCog implementation
allows the robot to engage in the game using and reacting
to different sensorial modalities. The architecture has been
designed as a distributed system whose basic elements are
software components that can be recursively nested into
CompoNets. The framework used for the C++ implementation
is RoboComp [23], which uses a DSL-based target code
generation system. This system allows the user to select an
speci�c communication middleware, such as Ice or Nerve [24]
in generation time.

The Executive, see Figure 3, drives a hierarchical state
machine that provides the necessary sequential order. This
machine activates severalCompoNetsimplementing the low
level behaviors. This behaviors publish the changes in the
world that they detect and also actuate on the drivable parts
of the robot. The DR is implemented as an instance of
RoboComp's RCIS simulator [23]. Typical changes of state
detected by the behaviors, such as a ball position change, are
directly transmitted to the DR via its management interface. As
a consequence, the globally accesible internal representation is
updated and the rest of the behaviors become aware of it. For
structural changes, such as the appearence of a new object, the
Executive is noti�ed �rst and some comprobations are made
before introducing the new object, to preserve the integrity
and internal coherence of the DR.

The rules of the game are simple: a) the robot is expected to
determine, in real time, a feasible arm con�guration to touch
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a ball; b) the ball is moved by the human player who controls
the game; c) the human determines when the game starts and
�nishes, and when the robot has to touch the ball; d) the human
is also in charge of indicating that the robot has properly
touched the ball so that the robot can move its arm back to its
home position. Concurrently with all the searching, tracking
and touching activity, the robot must interact with the human
player understanding asynchronous commands and generating
utterances that signal some internal transition or anomalous
situation.

A. RoboCog implementation

To describe the architecture, we will �rst identify all the
components and their relationships. The main component is
the Executive. This component manages the set ofcompoNets
and determines the sequential behaviour of the system by
implementing a concurrent, hierarchical state machine. This
machine runs on the engine provided by the Qt library.

� BallTracker: this component uses the RGBD camera of
the robot to continuously track the position of the ball.
Once the ball is localized, its 3D coordinates and shape
are introduced into the DR and made visible to the other
behaviors. Posterior changes in the estimated position of
the ball are made available for the rest of components by
publishing a topic1.

� BodyInverseKinematics: computes a generalized inverse
kinematics solution to the different parts of the robot's
body. To do so, this modules uses the internal represen-
tation of the robot hosted in DR to compute collison-free
trajectories. Currently, the solution is provided for the
neck-head subsystem and for the left arm. Using these
solutions, this component is able to drive these body parts
to a target position (the ball in that speci�c case) and
publish a topic when the goal has been reached.

� Dialogs: processes the transcription (and the con�dence
value) obtained from the speech recognition component.
Accurate transcriptions are translated into commands for
the robot, whereas low con�dence results require some
kind of con�rmation from the user.

� SpeechGenerator: allows the robot to speak to the human
player using the Verbio speech synthesis algorithm.

� CommandGenerator: provides the human player with a
visual interface to generate commands that can be used
by human players with speech disorders. This component
can be removed for standard games.

� SpeechRecognition: this component uses the Microsoft
Kinect Sensor and SDK software. It records the speech
signal using the robot's microphones and then transcribes
the speech uttered by the human player.

� DR: provides a dynamicdeep representationof the robot
and the environment. The perception modules update the
representation and everone can access it or request a copy
of it to simulate the outcome of possible actions, as in
the case of the BodyInverseKinematics module.

1The termtopic refers to a data structure that can be broadcasted to modules
that aresubscribedto it.

In addition to these behaviors, there are other components
running in the system that provide access to the hardware. The
motors of the arm and the head, and the Kinect sensor are
controlled by speci�c components that wrap the manufacturer
libraries and provide concurrent access to the rest of the
system. These components areJointMotor andRGBD.

In the current implementation of RoboCog, we use the Ice
middleware that the ZeroC company offers with open source
licence. Ice provides both a native client/server communication
system, and a a publish/subscribe event distribution service
named IceStorm2. This service allows to decouple component
connections: clients are now considered publishers and servers
subscribers. A single publisher can generate and send data to
any number of subscribers. Icestorm is used in this work to
deal with three events:

� The ball has been touched: BodyInverseKinematics
plays the publisher role and the Executive subscribes to
its events. This signal represents when the robot internally
detects that it has achieved the desired joint con�guration.

� The position of the ball has been detected: BallTracker
takes the publisher role while the Executive subscribes
the events. This signal is sent whenever the ball changes
its position. When the ball is out of the �eld a different
signal es emitted.

� A new command has been detected: Dialogs and/or
CommandGenerator play the publisher role while the
Executive subscribes to the events. It is generated after
an explicit command is uttered by the human player.

The rest of the communications are summarized below:
� Executive ! BodyInverseKinematics: Based on the

information received from the ball tracker, the executive
sends to BodyInverseKinematics the new goal position to
be achieved.

� BodyInverseKinematics! JointMotor : Values are sent
by BodyInverseKinematics to the arm joints and obtains
the �nal values from the robot.

� BallTracker ! RGBD: BallTracker obtains the stream
of RGBD data from the camera installed on the robot.

B. Ball detection and tracking

Ball detection and tracking is solved by a unique component
using the RGBD information obtained by the robot camera.
The component represents the possible situations using three
states: waiting, detecting and tracking. The waiting state
corresponds to the initial situation when the component is
waiting for a description of the target. Such description
is given by a color value (hue and saturation), assuming
untextured targets, and the target size. When the component
receives the target description, it changes its state to detecting.
Detection is carried out by selecting homogeneous regions of
the image whose color values differ less than a given threshold
from the target color. From the selected regions, the component
chooses the one which better approach the target size. If no
region coherent with the target description is found for a while,
the component returns to the waiting state in order to wait for

2http://www.zeroc.com/icestorm/
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Fig. 4: Global system architecture. The drawing shows the main components of the architecture and the type of
communications that occur among them.

another target description.
Once the target is detected, the component enters the tracking
state. To track the target, it creates a model HSD (Hue,
Saturation, Depth) histogram from the target image window
and proceeds as follows:

1) Create a probability image from the current image and
the model histogram by copying, for each pixel in
the image, the corresponding bin value of the model
histogram.

2) Run CamShift: �nd the object center usingMeanShift
on the probability image and adjust the target window
size according to it.

3) If CamShiftreaches the convergence:

a) Compute the HSD mean and standard deviation of
the new target window.

b) Adjust theHue, Saturationand Depth ranges of
the model histogram according to the mean and
the standard deviation.

c) Compute the model histogram of the new target
window.

Once the previous process has �nished, the component
makes an additional veri�cation over the new target position.
It estimates the target size using the depth values of the new
window and rejects the tracking result if it does not match
with the real size of the target. If the tracking process does
not provide a good result during a certain number of iterations,
the component returns to the detecting state and restarts the
detection process.

C. Arm reaching and head gazing

The problem of positioning an open articulated chain of
joints in pose space,SE(3), is generally solved by computing
the inverse of the non-linear forward kinematics function of the
chain. For a mobile manipulator endowed with an expressive
head, like Loki, touching an object might involve most of
the joints in the body, specially if natural movements are
sought. The head must gaze the object before the arm starts
to move and the base might turn slightly in search of a more
comfortable HRI posture. Of course, a movement of the base
implies a change in the position of the head and the arm,
so there must be a �nal consensus among the body parts.
Although this body-parts coordination is still ongoing research,
a simple requisite is to conceive the body as a set of parts that
whose con�guration can change dynamically. For example, an
arm can include the �rst four joints for a simple ”touch the
ball” task, or seven joints if the wrist is included for a more
complex ”prepare to grab” task, or eleven joints if the hand is
included for a ”grab this mug” task, or even 13 joints if the
mobile base is also included in the kinematic chain and the
task extends to ”grab that mug on the table”. To achieve this
�exibility we use a generalized inverse kinematics algorithm
for all and any open chains in the robot.

In Loki, both arms and the neck stand as three kinematic
chains departing from a central point in the torso. Each arm has
eleven dofs, including the hands. The neck is built as a simple
Stewart platform with three prismatic links for wrist rotation
plus an additional rotation motor aligned with the forearm. As
we want to use the same algorithm for all kinematic chains,
the closed structure is virtually converted to an open chain
composed of pitch, roll and yaw, through its trivial inverse
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kinematics equations that map angles to prismatic lengths.
These equations allows us to insert three 4x4 matrices in the
open chain representing the neck and accepting angles as input
parameters.

The generalized inverse kinematics algorithm used in the
implementation of this module is the Levenberg-Macquard
least-squares minimization procedure [25], [26]. This algo-
rithm regularizes the solution by continuously switching be-
tween Newton's method and gradient descent, to avoid singu-
larities. Given� the set of angles of the chain,J the Jacobian
of the forward kinematics ande the error vector, the LM
method computes the increments in the joints as:

�� = J T (JJ T + �I ) � 1e (1)

Note that the expression is valid for any open chain in the
kinematic tree of the robot. To compute the gaze of the head,
a virtual stick is placed at the optical center of the internally
represented - DR in RoboCog- RGBD sensor, that extends
outwards to the current target. The residual is computed as
the distance between the tip of the virtual stick and the target.

D. Speech Recognition

Speech constitutes one of the most natural communication
modalities for human beings. Owing to this fact, the use of
speech can be quite adequate for the supervisor to convey
information to the robot. Here, the supervisor can use his voice
to control the robot actions while he moves the ball around
the environment.

Although speech recognition is a challenging task for
several reasons (speaker variability, noisy environments, etc.)
the use of statistical approaches has proven to achieve accurate
results in several scenarios or environments. From this point
of view, speech recognition can be stated as the search for the
optimal sequence of wordŝw given an input utterancex:

ŵ = argmaxw P r(wjx) (2)

The maximization in Eq. (2) entails the estimation of a
single conditional probability (P r (wjx) which is usually not
feasible due to the scarcity of training data which does not
allow for accurately estimating such probability distribution.

Alternatively, we can apply Bayes' rule to Eq. (2) to write:

ŵ = argmaxw P r(xjw)P r (w) (3)

As can be seen in Eq. (3) now we have two probabilistic
models in the maximization. The �rst oneP r (xjw) is called
Acoustic modeland deals with the probability that the
sequence of wordsw produce the input speech signalx. The
second one,P r (w), is the Language modeland it is used
to score a transcription hypothesesw so that likely sequence
of words in the language are given a high probability and
unusual ones are given a low probability. The use of this
additional term (language model) can, to some extent, mitigate
the errors in the estimation of the conditional probability that
relates the input signalx and the transcription and, due to this
fact, the approach described by Eq. (3) is preferable to directly
modelling the conditional probability in Eq. (2).

Regarding the acoustic models, the input speech signal
is �rstly segmented into short frames where the signal
is assumed to be quasi-stationary. Next, different signal
processing techniques are applied until each frame in the
signal is represented by a feature vector. Hidden Markov
Models (HMMs) are widely used to approach acoustic models.
For each acoustic unit (a phoneme or a short sequence of
phonemes) an HMM is usually de�ned as a 3-state model,
where, in each state, two transitions are de�ned. One transition
to the same state and another one to the next state. This
way, the model is able to cope with the different durations
of the acoustic units due to different speakers or other factors.
The feature vectors in the signal constitute the observations
at each state and this observation are modelled by using a
mixture of Gaussian. The estimation of both the transition
probabilities and the Gaussian mixtures that generate the
feature vectors can be ef�ciently performed by using the
Baum-Welsch algorithm [27].

Language models, on the other hand, deal with the joint
probability of a sequence of words. Directly estimating this
joint probability is not usually feasible in most of the tasks
and therefore, a factorization where each word in the sequence
is conditioned to then � 1 words is followed. This approach
is known asn-gram model [28] wheren is the model order
that de�nes the number of previous words considered in
the conditional probability. Usually3-grams or4-grams are
employed where the conditional probabilities are estimated by
maximum likelihood.

Finally, once both acoustic and language models have
been estimated, the sequence of wordsŵ corresponding to
a speci�c utterancex is obtained according to Eq. (2) where
the maximization is solved through a dynamic programming
algorithm called Viterbi search algorithm.
In this work, the automatic recognition system is used along
with a dialog component. This way, the speech recognition
component copes with the process of transcribing the input
voice signal. This transcription is then sent to the Dialogs
component, along with a score that indicates the accuracy (or
the con�dence level) of the transcription. In case of a low
score, the SpeechGenerator component is used to require a
con�rmation from the supervisor.
The SpeechRecognition component has been developed in Ice
and runs on a Windows machine. It uses the Kinect Sensor
and the Software Developers Kit for Speech, provided by
Microsoft3. In this work, we have used the Spanish acoustics
model provided by the SDK. We programmatically built all
the constraints for the speech recognition language model or
grammar, according to the constrained set of commands that
can be recognized, along with two additional con�rmation and
rejection utterances.
The Dialogs component processes the con�dence score com-
puted by the speech recognizer. Accurate transcriptions are
directly published through the IceStorm service but low con-
�dence transcriptions result in an additional step where the
robot interacts with the supervisor. This interaction mainly
consists in the robot uttering the transcription achieved while

3http://www.microsoft.com/en-us/download/details.aspx?id=14373
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the supervisor con�rms or repeat the initial utterance. As
soon as the transcription is validated, it is published using
IceStorm. Otherwise, the speech recognition will wait for a
new utterance. This process can be observed in Fig. 5.
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Fig. 5: Dialog process

E. Preliminary Results

In this section, we present the experience of playing the
game with the robot through different snapshots. We also
introduce some of the main problems that can be faced while
playing the game.

Figure 6 shows a sequence where Loki is playing with a
human. The top left image shows the initial stage, where the
robot is waiting for a human command to start the game. In
the next image, the human tells the robot to scan the ball,
which involves head and neck movements in Loki. From this
moment, the robot starts computing in real time the body
con�guration that allows it to touch the ball. Then, in the
top right image, the human says the order ”touch” and the
robot acquires the desired position. While robot is moving its
arm, the human player moves the ball to a new position. Since
Loki is tracking in real time the ball position, it moves its arm
to the new ball position, as can be seen in the bottom left
of Fig. 6. The bottom middle image shows a new ”touch”
command after the human moved the ball to a new position.
Finally, bottom right image shows the end stage, where the
human �nishes the game.

In spite of fact that the game has been only evaluated
in a research laboratory with domain expert players, some
conclusions can be drawn. Although a systematic evaluation
of the robustness and accuracy of Loki's movements and
perceptions remains to be done, the �rst set of experiments
shows that the overall system is quite stable, moreover ball
tracking works reasonably well under a normal playing range
of velocities. Also, recovery from tracking failures or when the
ball reaches the end of the visual �eld are correctly handled
most of the times. Speech recognition with the Kinect sound
technology is more than enough for the kind of dialogs used in
the game. Finally, the inverse kinematics algorithm has proved
very robust and ef�cient for real time operation, even when

positioning the head and the arm simultaneously. From the
point of view of the multimodal interaction, playing with a
real robot is an attractive experience for people but repetitive
games tend to be boring. New options and possibilities should
be added to the ”touch the ball” game to make it more fun and
to challenge the cognitive architecture that controls the robot.
To handle the complexity of longer sequences of actions and of
the unpredictable events that can occur, a generative tool like
a symbolic planner must be used. This tool is being included
in the current development of RoboCog. Also, human players
can be frightened when the robot starts tracking the ball and
specially when it moves its arm. This is due in part to the
dimensions of the robot, but the effect could be mitigated by
working on more natural movements, in which the whole body
is involved and special care is take with the accelerations.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented the design and development
of a game between a human and a robot involving multimodal
interaction. We have evaluated the RoboComp framework in
a new challenging scenario in which several modules (speech,
inverse kinematics, tracking) have been tested together in
real-time. Also, the RoboCog architecture has been brie�y
described, showing the main lines of research that we are
pursuing with this multi-group effort. An implementation of
RoboCog over RoboComp has been tested for the ”touch the
ball” game, and very promising results have been obtained.
The software has been developed on the RCIS simulator and,
afterwards, translated to the robot Loki. A set of experiments
with humans have shown the validity of the proposal and,
also, many interesting ways in which the whole project can
be improved.

Based on this experience, we can conclude that RoboComp
is a very suitable solution for modular developments. The
geographic dispersion of the team members have stretched
the current potential of its tools to new limits. But the most
important lesson learnt here is the need of a serious discipline
and a well-thought methodology if high quality software is to
be obtained.

The use of several channels (voice, visual gestures or
visual interfaces) improves the acceptance of the game for
general public, since the robot is seen as a more friendly and
emphatic machine. However, a more complex game has to be
implemented if we want to sustain human attention for longer
periods of time. A critical part of the system, in which we have
already started to work, is a model of the human inside the
DR. This model must encompass several levels of information:
geometric, physical, symbolic, emotional and intentional. We
believe that only when this model of the interacting human
could be internally maintained by the robot, its responses will
be proactive and identi�ed by humas as truly intentional.

Ongoing work and future research include the use of this
architecture and robots for physical and cognitive rehabili-
tation, and as a household companion. Also, the RoboCog
architecture is being improved with new high-level capabilities
such as symbolic planning and learning. These improvements
will be tested using different serious games as as mean to
solve real human problems.
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Fig. 6: Loki playing with a human the ”touch the ball game”. See text for an explanation of the different stages.
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