
Graph Grammars for Active Perception

Luis J. Manso

University of Extremadura,

Cáceres, Extremadura.

lmanso@unex.es

Pablo Bustos

University of Extremadura,

Cáceres, Extremadura.

pbustos@unex.es

Pilar Bachiller

University of Extremadura,

Cáceres, Extremadura.

pilarb@unex.es

Marco A. Gutierrez

University of Extremadura,

Cáceres, Extremadura.

marcog@unex.es

Abstract—The complexity of the applications in which robots
are being used does not stop growing. Different solutions such as
sophisticated control architectures have been proposed in order
to deal with complexity in robot control. These solutions make
robotic systems more robust, scalable and easier to distribute,
understand and monitor. However, it is still not clear how
to cope with the complexity of the interaction dynamics that
underlie the perception of the environment. With this issue
in mind this paper presents the concept of cognitive graph
grammar and two algorithms that make use of it. Cognitive graph
grammars are a grammar-based theoretical framework designed
to support cognitive perception and, especially, the active nature
of perception. They provide a means to describe how graph-
based models can be generated and the behaviors to execute
depending on the perceptual context. This is done in such a way
that the information provided using this formalism can be used
for different perceptive purposes at the same time, such as to
link action and perception or to diminish perceptive errors. The
paper also describes an experiment in which a cognitive graph
grammar is used in an autonomous robot in order to efficiently
model an environment made of rectangular rooms with obstacles.

I. INTRODUCTION

It would be desirable to have robots able to interact with

non-trivial entities (e.g., compound objects, people). In order

to perform these tasks robots have to perceive and model their

environment to some extent. Unlike in the earliest experiments

of robotics, the floor is not necessarily restricted to textureless

shadow-free surfaces anymore, and objects are not necessarily

simple perfectly shaped boxes. Nevertheless, the environments

in which robots operate are not random. In order to build

actually intelligent robots, a priori knowledge about the envi-

ronment must be properly used.

The complexity that roboticists have to face when de-

veloping autonomous robotic systems has been successfully

handled from different points of view. Control architectures

such as those in [1], [2] suggest how to organize control

and information flows. Technologies such as [3], [4] handle

implementation issues from a software engineering point of

view using component-oriented programming. However, none

of these approaches can be directly used as a tool to support

perception or to ease the binding of perception and action. The

control logic of active perception algorithms still tends to be

formed by hard-coded if-then-else constructs that map robot

proprioception and its world model to specific perceptual states

and actions, which is error-prone. Moreover, they rarely take

into account context information, which is useful to produce

robust and coherent environment interpretations. Thus, de-

spite the use of the previously mentioned technologies makes

robotic systems better designed and easier to manage, the

complexity of the control logic associated with the perception

of the environment is hardly reduced. This paper presents

cognitive graph grammars, a theoretical framework that helps

roboticists building context-aware active perception systems.

When a robot builds symbolic models of its surroundings

it generally does so by recording the perceived environment

elements and their relationships. Since this can be seen as

the generation of a graph where nodes represent the modeled

symbols and edges represent the relationships between them, it

is interesting to formally describe how the robot might do that.

Precisely, graph grammars describe the rules governing the

formation of graphs with a specific structure. Graph grammars

generalize the concept of string grammars so that productions

can also be applied to graphs. In fact, strings can be seen

as undirected graphs such that all nodes –characters–, except

those at sentence endings, have an edge linking them to each

of their adjacent characters. Thus, graph grammars extend

string grammars in order to support input data with arbitrarily

complex connection patterns.

This paper introduces the concept of cognitive graph gram-

mar (CGG), a graph grammar-based formalism designed to

support symbolic active perception. They provide a means

to give raise to different active-perceptual mechanisms by

describing how graph-based models can be generated. Build-

ing on this formalism, additional algorithms are provided so

that descriptions based on CGG can be used for different

purposes, such as linking action and perception or improving

perception robustness. The paper also provides a proof-of-

concept experiment in which a CGG is used to model an

environment made of rectangular rooms with obstacles.

The remaining of the paper is organized as follows. Sec-

tion II reviews previous work on graph grammars and active

perception. The core of the paper is found in section III. It pro-

vides an introduction to the most widely used graph grammar

formalisms, describes the limitations that make necessary a

new one, and details the concept of cognitive graph grammars

both from a formal and practical point of view. It also describes

the different benefits of using CGGs and the perceptual phe-

nomena that can arise when using them. Section IV describes

an example of a CGG used in order to perform topological

mapping along with the experimental results obtained using it.

Finally, section V presents the conclusions and future work.

Proceedings Robotica’2012

978-972-98603-4-8

63





B. CGGs properties

As seen in section II, grammars can be used as a tool to sup-

port perception. This section describes how to achieve different

grammar-based perception-oriented techniques using CGGs.

To the knowledge of the authors, all published grammar-

based perception techniques can be classified in one of the

following types: a) bottom-up parsing, b) model verification, c)

context-aware perception restrictions, and d) covert perception.

In addition to these, CGGs can also be used to associate

perception and action. The remaining of the section describes

how to achieve each of these phenomena using CGGs.

Bottom-up parsing is the most common application of

grammars: given a sample from the input space, it is parsed

in order to recognize its structure. For some applications it

might only be necessary to perform model verification. It

can be seen as a bottom-up parsing where the parse result is

ignored, only providing whether or not there was any result.

It is also desirable that robot perception would dynami-

cally adapt to the scenario in which robots are located and

their conditions. Here we distinguish between a) passively

adapting to the environment by restricting what might be

perceived, context-aware restrictions; and b) high perceptual

layers actively providing top-down information to the bottom

perceptual layers in order to influence its output, covert

perception [16].

Additionally, we propose using CGGs to select the appro-

priate perception strategy or behavior according to the context.

The subset of rules that can be potentially triggered next can

be computed by analyzing the grammar rules and the current

model. Thus, by associating behaviors to rules, the compatible

behavior set is computed as the set of behaviors associated to

the rules that can be potentially triggered. It is worth noting

that all previous work regarding the use of grammars for

perception were applied to static images. The remaining of

the section elaborates how these perceptual techniques can be

implemented using CGGs.
1) Bottom-up parsing: Regular parsing algorithms are de-

signed to work with static and complete input data. Robot

perception generally entails movements that allow robots to

sense different parts of the environment. Since these move-

ments change the input data, the standard approaches can not

be used to parse it. The process of bottom-up parsing in CGGs

is performed by running the rules that are compliant with the

current model as long as the terminal symbols they introduce

are actually being perceived. When multiple possible rules can

be triggered at the same time, the approach presented in [14]

can be used in order to provide the most probable parse.
2) Context-aware restrictions on perception: A classic ex-

ample of this kind of phenomena in humans can be found

in [15]: the same visual input can be perceived as different

objects depending on the context. Graph grammars express

how graphs (symbolic models in our case) can be built. By

doing so they also describe how they can not be built, thus

providing the power to support context-aware perception. By

restricting which world elements can be perceived at each

moment according to the limitations of the grammar, the

number of false positives (i.e., misrecognized world elements)

can be reduced. In order to illustrate this, a simple two-rule

grammar example is provided in equation 1. The formalism

is not used in this case because this specific property can be

provided by all kind of grammars, not just CGGs.

S =⇒ arm ·A

A =⇒ forearm
(1)

If a robot using this grammar is certain that it perceived

the arm of a person (so its current model is ′arm · A′) it

can unquestionably discard any other arms. A pseudo-code

implementation is shown in algorithm 1. For every potentially

applicable rule, it computes the set of non-terminal symbols

appearing only on the RHS (not on the LHS) and returns the

union of those sets. This set contains the world elements that

can be perceived given the grammar and the current model.

Algorithm 1 Contex-aware restrictions algorithm:

Require: h: Input graph

Require: G: CGG such that G = (N,T, P,B,AV , AE , PB)
1: U ← ∅
2: forall p = (lhs, rhs) ∈ P do

3: if applicable(p, h) then

4: forall s ∈ (rhs.V − lhs.V ) do

5: if terminalSymbol(s) then

6: U ← U ∪ s

7: end if

8: end forall

9: end if

10: end forall

11: return U

3) Covert perception: The information provided by gram-

mars can also be used to influence bottom-up perception, not

just to filter its output. Thus, grammars are also a valid frame-

work to enable covert perception [16]. A priori knowledge

of the world can be used to influence bottom-up perception

by enforcing or inhibiting the detection of specific parts of

the environment. Thus, grammars can not only reduce false

positives in object detection but also reduce false negatives.

The grammar rule described in table I(b), is a good example

of this. It is further explained in section IV. When parts of

the object to detect are occluded, bottom-up object detectors

tend to decrease their effectiveness dramatically. The partial

pattern detected can be used to compute the probability of a

false negative. This can be expressed using the Bayes theorem

as in equation 2. In the equation, F stands for the event “a not

detected entity should be forced into the model”, and C stands

for the event of the robot having a specific context (potentially

partial input).

p(F |C) =
p(C|F )p(F )

P (C)
(2)

This is one of the most interesting applications of graph

grammars. Examples of this type of technique can be found

in [9], [10], [11] or [12].

Proceedings Robotica’2012

978-972-98603-4-8

65



Fig. 2. Overhead view of the environment used for the experiments. It is
composed of four rectangular rooms connected in a loop. The robot is the
squared object on the right-bottom part of the image. Objects are placed in
the environment in order to prove the robustness of the approach.

4) Action selection: Generally, given the grammar and the

current graph, only a subset of rules can be potentially applied.

Since CGG rules have associated behaviors, computing the

subset of potentially applicable rules is equivalent to compute

the candidate set of perceptual actions. It can be used to enable

robots to decide what to do next. Depending on the grammar

and the context, the subset can be formed by several or a single

action. Algorithm 2 details how to compute the action set.

Algorithm 2 Action selection algorithm:

Require: h: Input graph

Require: G: CGG such that G = (N,T, P,B,AV , AE , PB)
1: U ← ∅
2: forall p ∈ P do

3: if applicable(p, h) then

4: U ← U ∪ PB(P )
5: end if

6: end forall

7: return U

The novelty of the underlying idea of CGGs in this respect

is not the well-known idea of associating behaviors to robot

states, but to do it by defining the perceptive state of robots as

their set of potentially applicable rules. Moreover, algorithm 2

can be easily extended to only take into account those rules

which are of interest depending on the robot goal.

IV. EXPERIMENT

In order to illustrate the usage of CGGs, this section

provides a real example of a grammar used in a robot that

models its environment. In particular, the objective of this

grammar is to enable a robot to model a simple world made of

rectangular connected rooms in which obstacles can be found.

Section IV-B describes the benefits obtained from the use of

CGGs. Section IV-C provides experimental results obtained

using this grammar.

A. Grammar definition

1) Grammar alphabets: The first step is to define the

entities that the world model will be composed of. This is

an arbitrary decision: it is up to the roboticist to decide which

symbols to use. It will depend on the environment or object

to model, and the desired level of detail. For this experiment

it was decided to use symbols for rooms, doors and obstacles.

r Used for rooms.

d Used for doors. Doors will link two different rooms.

o For obstacles. Obstacles will be located within rooms.

It is also necessary to define the attributes that the symbols

will have. In particular, rooms, doors and obstacles have their

position (x and y) and their dimensions (width and length).

Moreover, rooms also have an active attribute that is true for

the room in which the robot is located and false otherwise. As

can be seen in table I, attributes can be used in order to enable

or disable the application of the different rules. The resulting

alphabets are shown in equation number 3.

N = {S, ∗}

T = {r, d, o}

AV = {width, length, x, y, active}

AE = ∅

(3)

2) Grammar rules: Once the entities to model are known,

the next step is to write the rules that will guide the perception

process. In most cases this is a cyclic task (i.e., the symbols

may depend on the rules and vice versa), and sometimes it

will be necessary to introduce new non-terminal symbols.

Rule 0 specifies that the start symbol can be transformed

into a room. This is the only rule with the start symbol (S) in

its left hand side, so the start symbol can only be transformed

into a room. This implies that, when the perception process

starts, the first task robots have to perform is to model the room

in which they are located. Rule 1 describes how the discovery

of new rooms transforms the model. The rule creates a new

room symbol and makes it adjacent to the room in which

the robot is located. It is triggered when the robot perceives

or goes through a door when there is only one room in the

model or when there are no close rooms to perform loop-

closing with. Rule number 2 is similar to the rule number 1,

but applicable to objects instead of rooms. It links obstacles to

rooms, so it is used when the robot perceives new obstacles.

Rule 3 is used for loop closing, when the robot realizes that

two rooms previously modeled as disconnected are actually

adjacent. In this case, a new door is included in the model

without including a new room. Rule 4 is also used for loop

closing. It describes how the event of finding out that two

rooms that were thought to be different are actually the same

would affect the graph. This happens when the robot closes

a loop without recognizing that the new room it entered is

already known. Both rooms collapse and all the ingoing and

outgoing links are redirected from r1 and r2 to the new room

r3. The formal descriptions of the rules are shown in table I.

The resulting P and B sets (containing rules and behaviors)

66 Proceedings Robotica’2012

978-972-98603-4-8






